

# Ecotoxicological testing in the studies on the toxicity of cyanobacterial blooms

Maria Bartoszewicz<sup>1</sup>, Hanna Mazur-Marzec<sup>2</sup>, Małgorzata Michalska<sup>1</sup>, Justyna Koboz<sup>2</sup>

<sup>1</sup> Medical Academy of Gdansk, Department of Environmental Protection and Hygiene of Transport, mary@amg.gda.pl <sup>2</sup> University of Gdansk, Institute of Oceanography, biohm@univ.gda.pl

Cyanobacterial blooms, a natural phenomenon occurring in seawater as well as freshwater, have intensified alarmingly in recent years; this is due to eutrophication and overall pollution of waters. The presence of blue-green algae in water may be hazardous to the health of humans and animals alike, particularly in freshwater reservoirs used for the abstraction of drinking water, and in bathing waters. However, cyanobacteria do not always produce toxic substances, therefore at the preliminary stage of waters monitoring it is more important to determine whether they do; the identification of toxins is of secondary importance.



### Materials and methods

- ightarrow the inland water samples from the Pomerania Province and coastal waters from the Gulf of Gdansk collected in the period of June-August 2006 during cyanobacteria blooms,
- cyanobacteria strains isolated from the inland waters of the Pomerania Province and coastal waters from the Gulf of Gdansk. Phytoplankton samples were at first filtered and hence suspension of cyanobacteria was obtained. Subsequently, it was sonificated and disintegrated. Sample obtained this way represent approximate environmental conditions during cyanobacteria blooms, when cyanobacteria die out and toxins are released to water,
- → extracts of Microcistis aeruginosa and Nodularia spumigena grown in BG-11 (fresh water) and BG-11N (brackish water) broth.



#### Two tests were selected for ecotoxicological examination of water: THAMNOTOXKIT F™ (test organism - Thamnocephalus platyurus)

- for fresh waters,
  - ARTOXKIT M<sup>™</sup> (test organism Artemia fransiscana) for brackish and saline waters.

#### Two methods of toxins identification were applied:

- HPLC (High Performance Liquid Chromatography) with the use of Photo-Diode Array System (HPLC-PDA) which make qualitative and quantitative analysis of cyanotoxins possible. The microcystins (RR and LR) and nodularin were identified by their retention time and characteristic absorption spectrum with maximum at 238 nm,
- ELISA (Enzyme-Linked Immunosorbent Assay) test based on the principle of antibody antibody interaction. Rabbit antibody react with microcystins (Mcyst-RR, YR and LR) and nodularin. Results in this test are defined as toxic equivalent of Mcyst-LR concentration with the detection limit of  $0,1\mu\text{g/l}$  and they indicate all microcystin types.



Tab. 2 Ecotoxicity of cyanobacteria species isolated from coastal waters of the Gulf of Gdansk ARTOXKIM M (Artemia fransiscana)

### Results

Tab. 1 Ecotoxicity of cyanobacteria species isolated form fresh waters of Pomeranian province THAMNOTOXKIT F (Thamnocephalus platyurus)

| Species                           | Strain    | Date and place<br>of sampling   | Broth             | Toxins<br>Methods<br>of isolation – HPLC<br>Toxins concentration | Test results                                                                                                                                                                                      |
|-----------------------------------|-----------|---------------------------------|-------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |           | Chrod                           | cocales           |                                                                  |                                                                                                                                                                                                   |
| Microcystis aeruginosa            | MKR 0105  | Vistula Bay,<br>10.10.2005      | BG11              | mikrocistin<br>6,9 µg/dm³                                        | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                |
| Microcystis aeruginosa            | MKR 0205  | Vistula Bay,<br>10.10.2005      | BG11              | mikrocistin<br>19,55 µg/dm³                                      | Toxicity effect<br>Mortality of<br><i>T. platyurus</i> – 20 %<br>in the highest concentration                                                                                                     |
|                                   |           | Oscilla                         | atoriales         |                                                                  |                                                                                                                                                                                                   |
| Planktothrix agardhii             | PKLD 0205 | Klasztorne Lake,<br>19.09.2005  | BG11, Z8          | Toxins not detected                                              | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                |
| Oscillatoria sp.                  | OKRL 0105 | KarlikowskieLake<br>31.08.2005  | BG11              | mikrocystin<br>Mcst-R 1,68mg/g*                                  | Strong toxicity effect<br>mortality of <i>T. platyurus</i> - 82 %<br>in the highest concentration;<br>mortality 53 % in dilution 50 %<br>and Toxicity effect mortality –<br>23 % in dilution 25 % |
| Nostocales                        |           |                                 |                   |                                                                  |                                                                                                                                                                                                   |
| Anabaena sp.                      | AKLD 0503 | Klasztorne Lake<br>25.07.2003   | BG110**           | Toxins not detected                                              | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                |
| Anabaena sp.                      | AKLR 0102 | Karlikowskie Lake<br>25.07.2003 | BG110             | Toxins not detected                                              | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                |
| Aphanizomenon sp.                 | AKLD 0104 | Klasztorne Lake<br>31.08.2005   | BG11              | Toxins not detected                                              | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                |
| Calothrix sp.                     | CJAS 0105 | Jasień lake<br>31.08.2005       | BG110             | Toxins not detected                                              | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                |
| Cylindrospermopsis<br>raciborskii | CRRU 0105 | Rusałka Lake 08.2005            | BG11 <sup>0</sup> | Toxins not detected                                              | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                |

 Tab.
 4 Ecotoxicity of cyanobacterias extracts (Microcistis aeruginosa i Nodularia spungena)

 - the sensitivity comparison of both tests: ARTOXKIM M (Artemia fransiscana) and THAMNOTOXKIT

 F (Thamnocephalus platyurus)

| Species                   | Samples       | Toxins                 | Toxins<br>concentration | Results of<br>ARTOXKIM M test                                                                                                                                                                                        | Results of<br>THAMNOTOXKIT F test                                                                                                                                                                  |
|---------------------------|---------------|------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nodularia<br>spumigena    | Cell extract  | nodularin              | 5,6 µg/ml               | Strong toxicity effect<br>100% mortality of <i>A. fransiscana</i><br>in concentrations of<br>100%, 50% and 25 %<br>Significant toxicity effect<br>50% mortality of <i>A. fransiscana</i><br>in concentrations 12,5 % | Strong toxicity effect<br>100% mortality of <i>T.platyurus</i><br>in concentrations of<br>100%, 50% and 25 %<br>toxicity effect<br>20% mortality of <i>T.platyurus</i> in<br>12,5 % concentrations |
| Microcistis<br>aeruginosa | Cell extract  | mikrocystin<br>Mcst-LR | 7,4 µg/ml               | Strong toxicity effect<br>100% mortality of A. fransiscana<br>in all concentrations used<br>(100% - 6,25%)                                                                                                           | Significant toxicity effect<br>mortality of <i>T. platyurus</i> - 43 % in<br>the highest concentration                                                                                             |
| Nodularia<br>spumigena    | Broth extract | nodularin              | 0,1 μg/ml               | Significant toxicity effect<br>57% mortality of <i>A. fransiscana</i><br>in the the highest concentrations<br>toxicity effect<br>20% mortality of <i>A. fransiscana</i><br>in 12,5% concentrations                   | Mortality of<br><i>T. platyurus</i> – 0 %                                                                                                                                                          |
| Microcistis<br>aeruginosa | Broth extract | mikrocystin<br>Mest-LR | 0,1 µg/ml               | Strong toxicity effect<br>100% mortality of <i>A. fransiscana</i><br>in concentrations of<br>100%, 50% and 25 %                                                                                                      | Mortality of<br>T. platyurus – 0 %                                                                                                                                                                 |

### Conclusions

1. The obtained results prove that tests THAMNOTOXKIT and ARTOXKIT are useful tools in measuring ecotoxicity in monitoring programs. 2. Considerable sensitivity of the two chosen tests was confirmed by ecotoxicological examinations of cell

- extracts, isolated strains and uppermost the environmental samples:
- tracts, isolated strains and uppermost the environmental samples: ecotoxicological research on cell extracts showed that mortality of marine crustacean Artemia fransiscana was 100% at concentration of Mcst-LR of 1,85µg/ml. However, fresh-water crustacean Thamnocephalus platyurus proved to be more resistant as only 43% of them died at concentration of Mcst-LR 7,4 µg/ml. This dissimilarity was not observed in case of nodularin. Both species reacted with 100% mortality at nodularin concentration of 1,4µg/ml. Yet, at lower concentration (0,7µg/ml) fresh-water crustacean Thamnocephalus platyurus turned out to be again less sensitive with mortality of 20%. At the same nodularin concentration of 3,6 µg/l caused 100% morthality of Thamnocephalus of 0,4 µg/ml, while Mcst-LR concentration of 3,9 µg/l caused 100% morthality of Thamnocephalus platyurus and what is more Mcst-LR toxicity properties were still observed at 0.975 µg/l concentration with Thamnocephalus platyurus mortality of 25% (tab. 3 and tab. 5). examination of cell extracts and natural environment samples enabled to state that differences between the two species' response to cyanotoxin exposion are significant, but it is possible that they may be caused by other environmental factors, not cyanotoxins. The problem is going to be worked on.

| Species                | Strain     | Date and place<br>of sampling | Broth               | Toxins<br>Methods of isolation –<br>HPLC<br>Toxins concentration | Test results                         |  |
|------------------------|------------|-------------------------------|---------------------|------------------------------------------------------------------|--------------------------------------|--|
|                        |            | 0:                            | scillatoriales      |                                                                  |                                      |  |
| Lygbya sp.             | LGG 0505   | Puck 10.08.2005               | BG11                | Toxins not detected                                              | Mortality of<br>A. fransiscana – 0 % |  |
| Phormidium sp.         | PGG 0405   | Puck 31.05.2005               | BG11 PSU7           | Toxins not detected                                              | Mortality of<br>A. fransiscana – 0 % |  |
| Phormidium sp.         | PGG 0305   | Władysławowo<br>13.04.2005    | BG11                | Toxins not detected                                              | Mortality of<br>A. fransiscana – 0 % |  |
| Phormidium sp.         | PGG 0904   | Gdynia,<br>05.08.2004         | BG11                | Toxins not detected                                              | Mortality of<br>A. fransiscana – 0 % |  |
|                        | Nostocales |                               |                     |                                                                  |                                      |  |
| Anabaena sp.           | AGG 0203   | Gdynia<br>04.08.2003          | BG11º PSU7          | Toxins not detected                                              | Mortality of<br>A. fransiscana – 0 % |  |
| Nodularia<br>spumigena | NSGG 0205  | Gdynia<br>05.07.2005          | BG11º PSU7,<br>Z8xS | nodularin<br>3,5 µg/mg*                                          | Mortality of<br>A. fransiscana – 0 % |  |
| Nodularia              | NHGG 0105  | Gdynia                        | BG110 PSU7,         | Toxins not detected                                              | Mortality of                         |  |

## Tab. 3 Ecotoxicity of cyanobacteria species – samples from fresh waters of Pomeranian province THAMNOTOXKIT F (Thamnocephalus platyurus)

| Species                                                     | Date and place<br>of sampling                    | Toxins<br>Methods of isolation –<br>HPLC<br>Toxins concentration | Test results                                                                                                                                                 |
|-------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |                                                  | Nostocales, Chrooce                                              | occales                                                                                                                                                      |
| Anabaena crassa                                             | Water intake<br>Straszyn<br>(Gdansk)<br>01.06.06 | Mikrocystin<br>Mcst-LR<br>3,9 µg/dm³                             | Strong toxicity effect<br>mortality of <i>T. platyurus</i> -<br>100 % in the highest concentration; and toxicity effect<br>mortality - 25 % in dilution 25 % |
| Anabaena sp.                                                | Water intake<br>Czyzykówko<br>14.07.06           | No data                                                          | Significant toxicity effect<br>mortality of <i>T. platyurus</i> - 40 % in<br>the highest concentration;                                                      |
| M. aeruginosa,<br>Anabaena grassa,<br>Anabaena<br>flos-aque | Tuchom Lake<br>04.07.06                          | Toxins not detected                                              | Mortality of<br><i>T. platyurus</i> – 0 %                                                                                                                    |

Tab. 5 Ecotoxicity of cyanobacteria species – samples from coastal water of the Gulf of Gdansk ARTOXKIM M (Artemia fransiscana)

| Species             | Date and place of sampling | Toxins<br>Methods of isolation<br>Toxins concentration |                        | Test results                                                                                     |  |
|---------------------|----------------------------|--------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------|--|
|                     |                            | HPLC                                                   | ELISA                  |                                                                                                  |  |
| Nostocales          |                            |                                                        |                        |                                                                                                  |  |
| Nodularia spumigena | Sopot<br>25.07.06          | Nodularin<br>0,4 µg/ml                                 |                        | Strong toxicity effect<br>mortality of<br>A. fransiscana - 100 % in the highest<br>concentration |  |
| Anabaena sp.        | Gdynia<br>09.08.06         |                                                        | Mikrocystin<br>Mcst-LR | Mortality of A. fransiscana – 0 %                                                                |  |

3. Due to high toxicity of microcystin Mcst-LR WHO decreed a recommendation that acceptable concentration of this toxin in drinking water should be less than  $\mu g/l$ . Another suggestion (still under preparation) states that concentration of Mcst-LR in bathing water should be below  $5\mu g/l$ Though the performed examinations affirm that the two test organisms (Thamnocephalus platyurus, Artemia fransiscana) do not react with mortality at such low concentration of hepatotoxins, results are still deficient and insufficient data don not confirm conclusion with satisfying reliability

Medical Academy of Gdańsk, Department of Environmental Protection and Hygiene of Transport 81-519 Gdynia, ul. Powstania Styczniowego 98 phone: +48 (58) 69-98-541. University of Gdańsk, Institute of Oceanography, 81-378 Gdynia; Al.Marszałka Piłsudskiego 46, phone: +48 (58) 620-21-01