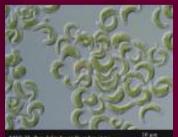
13th International Symposium onf Toxicity Assessment

Toyama, Japan 2007

<u>Ring-testing</u> and <u>**Quality**</u> Control testing</u> in **<u>Ecotoxicology</u>** :

State of the art with Toxkit microbiotests

Baudo Renato Persoone Guido Janssen Colin


CNR - Istituto per lo Studio degli Ecosystemi - Italy
Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology + MicroBioTests Inc.
Ghent University, Laboratory of Environmental Toxicology Various toxicity tests have been endorsed by national and international organisations (DIN, AFNOR, DTA... OECD, ISO, EPA, ASTM...)

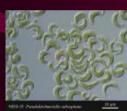
Bacteria

© 2004 Dennis Kunkel Microscopy, Inc.

Micro-algae

S 31 Psychologickie Americkie in Avapelani

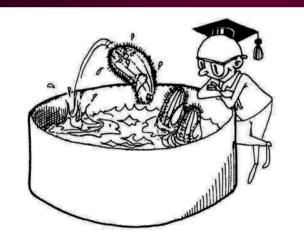
Brachydanio rerio (zebra danio) / MC


But have all "standard" tests been submitted to ring-testing to determine :

- a) If they are really standardised from the **methodological** point of view ?
- b) If they are practicable from the **technical** point of view ?
- c) If the results of **reference tests** obtained by different labs are "sufficiently" similar ?
- d) If their **costs** are "acceptable" for repeated applications ?

ISO norms for the 4 most commonly applied aquatic toxicity tests

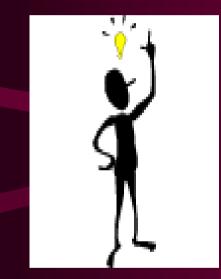
ISO 11348 1,2,3 Bacterial luminescence inhibition test *Ring-tests in 1991-1993 (with 16-22 laboratories)*


ISO 147 – Freshwater algal growth inhibition test *Ring-tests in 1980-1981 (with 9- 20 laboratories)*



ISO 6341- Acute Daphnia test Data collection in 1994 (from 36 laboratories)

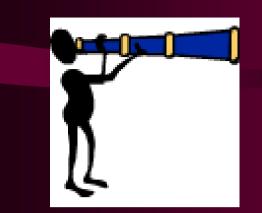
ISO 7346 – Acute fish test *No ring-test* Burden of most toxicity tests : Dependence of the (continuous) <u>culturing/maintenance</u> of <u>live stocks</u> of test species


OSTS

Infrastructure

Space

Time


CULTURE FREE MICROBIOTESTS

as <u>alternatives</u> to

"conventional"

toxicity tests

Development of cost-effective culture/maintenance free microbiotests

With bacteria

With micro-algae

With invertebrates

With fish

 \odot

 \bigcirc

 (\cdot)

Toxkits

Microtox

Toxkits

MICROBIOTESTS

Degree of standardisation ?

Sensitivity ?

Precision ?

Ring-testing?

The MICROTOX

bacterial luminescence inhibition test with freeze-dried *Vibrio fischeri*

 13 ring-tests have been organised yearly since 1993 by the Environmental Toxicology Laboratory of the Technical University of Catalonia in Spain

• 31 laboratories participated in the ring-test 2005

• Overall CV = 27 %

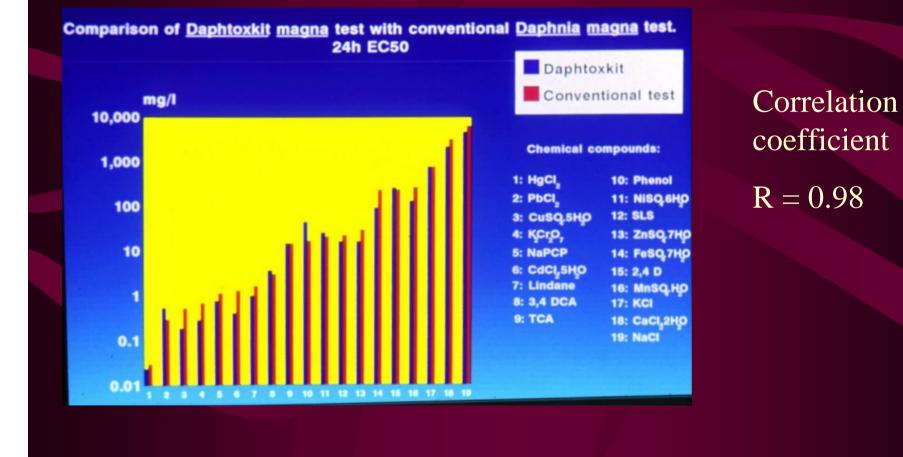
TOXKIT microbiotests

Basic approach :

Use of dormant or immobilized stages of selected aquatic organisms from which the test biota

can be obtained "on demand"

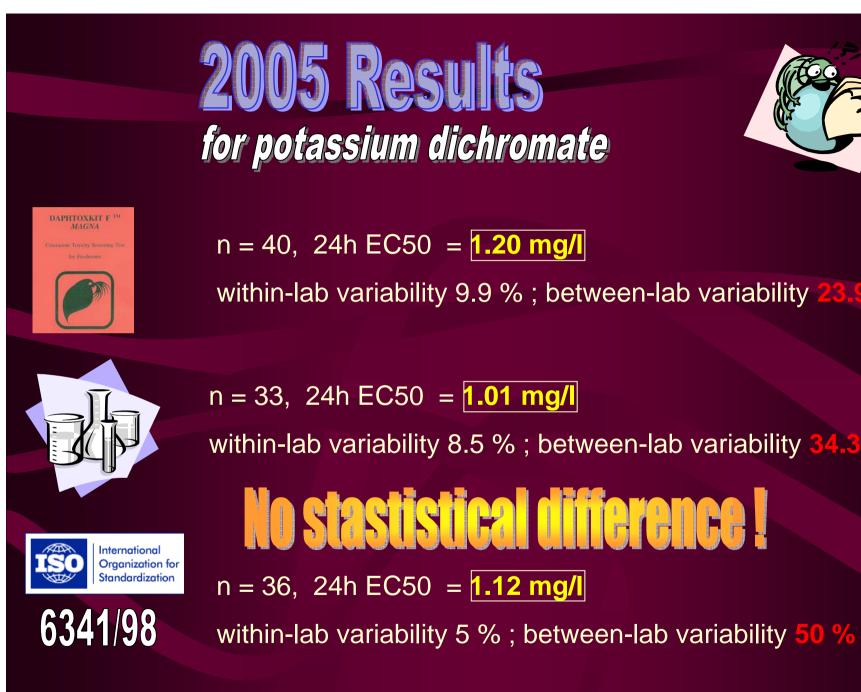
DAPHTOXKIT F magna



Hatched neonates

Dormant egg

Sensitivity comparison Conventional *Daphnia magna* test / Daphtoxkit F *magna* Persoone 1998 Pure chemicals



Intra- and inter-laboratory sensitivity comparison studies Daphtoxkit F magna/conventional Daphnia magna test (1998-2005)

- Pesticides (Poland)
- Household products (Croatia)
- Waste leachates (Austria)
- Reference chemical and fly ash leachate (Slovak Republic)
- Chemical mixtures (Slovenia)
- Industrial effluents (UK)
- Industrial effluents (Flanders, Belgium)
- Reference chemical (Italy)

2003 and 2005

QUALITY CONTROL TESTS with the Dapthoxkit F magna on potassium dichromate (K₂Cr₂O₇)

1. <u>Performed by MicroBioTests Inc</u> – Belgium (from 2002 to 2007)

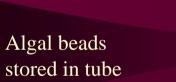
164 tests with Daphnias from 21 batches of dormant eggs Mean 24h EC50 : 1.15 mg/l (CV = 18.31 %)

2. <u>Performed by Grupo Interlab</u> – Spain (from 1997 to 2007)

63 tests with Daphnias from 34 batches of dormant eggs Mean 24h EC50 : 1.05 mg/l (CV = 28.59 %)

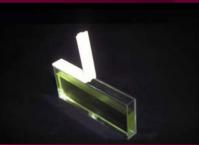
6341/98

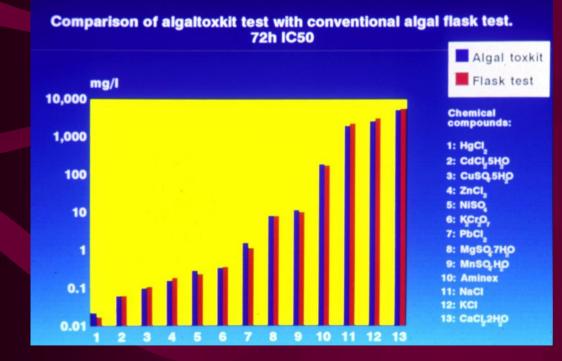
EC 50 : 1.05 mg/l (CV = 28.59%) NO STASSISTICAL DIFFERENCE Mean 24h EC 50 : 1.12 mg/l (CV = 50%) CONCLUSIONS FROM ALL THE INTRA- AND INTER-LABORATORY COMPARISON STUDIES ON THE DAPHTOXKIT F MAGNA


The <u>sensitivity</u> of the young Daphnias obtained from dormant eggs is <u>the same</u> as that of Daphnias from laboratory cultures

The Daphtoxkit F magna microbiotest is a well-validated low cost alternative to the conventional *Daphnia magna* test

ALGALTOXKIT F


Micro-algae immobilised in algal beads



Long cells as test containers

Sensitivity comparison Conventional algal test / Algaltoxkit F Persoone 1998 Pure chemicals

Correlation coefficient

R = 0.98

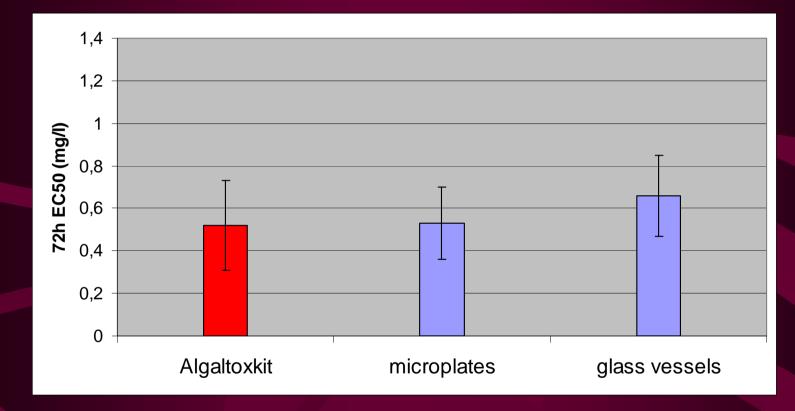
Intra-laboratory sensitivity comparison studies Algaltoxkit F/conventional algal assay (1998-2005)

- Waste leachates (Austria)
- Sediment pore waters (Flanders, Belgium)
- Reference chemical (Wallonia, Belgium)
- Reference chemical and fly ash leachate (Slovak Republic)
- Waste water treatment plant effluents (Denmark)
- Industrial effluents (UK)
- Industrial effluents (Flanders, Belgium)
- No ring-test

ISO ring-test on micro-algae : <u>25 years ago</u> (1980-1981)

INTERNATIONAL RING-TEST ON THE ALGALTOXKIT F MICROBIOTEST (2006)

Organizer : Laboratory of Environmental Toxicology and Aquatic Ecology – Ghent University, Belgium


Objectives :

- 1. Determination of the "precision" (degree of standardisation) of the Algaltoxkit
 - 2. Sensitivity comparison of the Algaltoxkit F with the "conventional" algal toxicity test

Ring-test micro-algae 2006

Test method : ISO 147 Test species : *Pseudokirchneriella subcapitata* Test compound : reference chemical K₂Cr₂O₇ Number of participating laboratories : 33 Number of countries : 14 Number of tests performed : Algaltoxkit : 42 Erlenmeyers : 5 Microplates : 8

Comparison of the results of the Algaltoxkit with those obtained in micoplates and in Erlenmeyers

 Mean 72h EbC50 Algaltoxkit : 0.52 mg/l
 (CV : 40 %)

 Mean 72h EbC50 Microplates : 0.53 mg/l
 (CV : 33 %)

 Mean 72h EbC50 Erlenmeyers : 0.66 mg/l
 (CV : 29 %)

QUALITY CONTROL TESTS with the Algaltoxkit on potassium dichromate (K₂Cr₂O₇) performed by MicroBioTests Inc. (from 2002 to 2007)

Number of batches of algal beads : 21 Total number of tests : 76 Mean 72h EbC50 : 0.46 mg/l (CV = 21.53 %)

CONCLUSIONS FROM ALL THE INTRA- AND INTER-LABORATORY COMPARISON STUDIES ON THE ALGALTOXKIT

The <u>sensitivity</u> of micro-algae de-immobilized from algal beads is <u>similar</u> to that of micro-algae from laboratory cultures

The Algaltoxkit microbiotest is a well-validated low cost alternative to the conventional algal test

EU Ecotox Waste Ringtest 2006-2007

Tests on waste eluates : Bacterial luminescence inhibition testAlgal growth inhibition testDaphnia acute test

Tests on solid wastes : Earthworms acute test Plant test

Additional or alternative

test methodologies also welcome

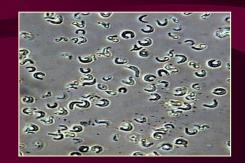
The following Toxkit microbiotests have been performed on the wastes in the framework of the EU ringtest :

Algaltoxkit F

Chronic Rotoxkit F

Daphtoxkit F

Thamnotoxkit F


Phytotoxkit

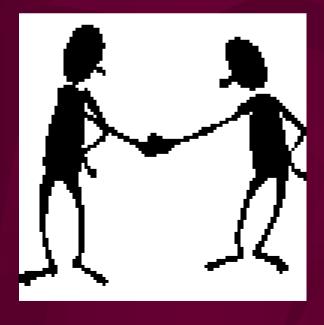
Toxkit data were received from 14 laboratories in 8 European countries

Name of laboratory	Abbreviation	Number of different Toxkit tests performed
MicroBioTests Inc. (Belgium)	MBT	5
Institut Provincial d'Hygiene et de Bactériologie (Belgium) IPHB		2
EPAS (Belgium)	EPAS	2
AlControl Laboratories (United Kingdom)	ALC	4
Agenzia per la Protezione dell'Ambiente Tuscany (It	aly) ARPAT	1
Agenzia per la Protezione dell'Ambiente Grosseto (It	taly) ARPAG	1
Instituto do Ambiente (Portugal)	IDA	2
Mälardalen University (Sweden)	MALU	3
Technische Universität Braunschweig (Germany)	TUB	2
Insavalor-Polden (France)	POLD	1
INERIS (France)	INER	1
IRH Environnement (France)	IRH	1
Laboratoire Santé Environ. Hygiene de Lyon (Franc	e) LSEH	1
Grupo Interlab (Spain)	GRINT	1

72h ErC50's of the tests on micro-algae

Incineration waste			
Convent.te	sts Algaltoxkit		
(n = 15)	(<i>n</i> = 5)		
Mean 6.9	% 2.5%		
St.dev. 9.7	1.9		
CV% 141 9	% 77 %		

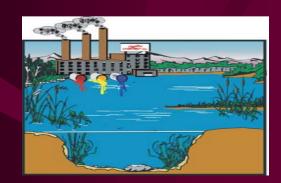
Waste wood		
Convent.tests	Algaltoxkit	
(<i>n</i> = <i>12</i>)	(<i>n</i> = 5)	
Mean 0.27 %	0.24 %	
St.dev. 0.16	0.10	
CV% 58 %	42 %	


24h EC50's of the tests on *Daphnia magna*

Incineration waste				
Convent.tests		Daphtoxkit		
(n = 3)	87)	(n=7)		
Mean	2.85 %	2.51 %		
St.dev.	1.10	0.92		
CV%	39 %	37 %		

Waste wood			
Convent.tests	Daphtoxkit		
(<i>n</i> = 47)	(n = 10)		
Mean 0.51 %	0.62 %		
St.dev. 0.36	0.19		
CV% 69 %	31 %		

Overall, the results of the Toxkit assays in the <u>**EU waste ringtest also clearly revealed that**</u> **the microbiotests are reliable and cost-effective tools in a test battery, for the determination of the hazard of <u>solid wastes</u>.**


Microbiotests

- •<u>Culture/maintenance free</u>
- Miniaturized
- User-friendly
- Highly standardized
- Validated
- *Highly reproducible*
- Cost-effective

A practical and reliable tool, particularly suited for **Routine toxicity monitoring**

Research

